INSTRUCTOR:	OFFICE:
PHONE: EMAIL: OFFICE Hours:	PREREQUISITES: Two units of algebra, one unit of geometry, and satisfactory performance on departmental placement examination or successful completion of the pre-college algebra workshop or its equivalent.
TEXT: Sullivan: College Algebra and Trigonometry: Enhanced with Graphing Utilities, (WVU)5th edition. Upper Saddle River, NJ, Prentice -Hall. ISBN: 126919884X	LAB MANUAL: College Algebra Study Guide and Lab Manual: Butler,Mays, Pyzdrowski \& Pyzdrowski, available through WVU Bookstore ISBN 10: 126937513X
FINAL: December 9, 2016 * All Final Exams for this class will be given on Friday, December 9 in 213/215 or 421/417 labs in Armstrong Hall. Students will sign up for final exam times online after Exam 4; you will receive an email about signing up. Either a scientific or graphing calculator is required for the course. Only those calculators permitted for use on the ACT test are permitted. Please see your instructor if you have questions. 84590 MATH 126B 001 MWF 09:00 am-09:50 am MRB-E 113 Schraeder 84595 MATH 126B 002 T 09:30 am-10:20 am ARM-D 215 84596 MATH 126B 003 T 09:30 am-10:20 am ARM-D 421 82680 MATH 126B 004 MWF 10:00 am-10:50 am MRB-E 113 Schraeder 82682 MATH 126B 005 T 10:30 am-11:20 am ARM-D 215 84597 MATH 126B 006 T 10:30 am-11:20 am ARM-D 421 87829 MATH 126B 007 MWF 11:30 am-12:20 pm BUE-D 459 Waibogha 87882 MATH 126B 008 T 11:30 am-12:20 pm ARM-D 215 87883 MATH 126B 009 T 11:30 am-12:20 pm ARM-D 421 83997 MATH 126B 011 MWF 12:30 pm-01:20 pm MHH-D G21 Waibogha 84598 MATH 126B 012 T 12:30 pm-01:20 pm ARM-D 215 84599 MATH 126B 013 T 12:30 pm-01:20 pm ARM-D 421	Your grades are determined by your instructor. All course and grade questions should be first directed to your instructor. If for some reason, you or your instructor feel that it is necessary, you may wish to schedule an appointment with a M126B Course Coordinator to discuss this course. Course Coordinator: Dr. Laura J. Pyzdrowski 411 Armstrong Hall 304.293.2011 All extreme case situations are reviewed and decided upon by the Math 126 instructional team during finals week. Such cases require written documentation from the student outlining the request and circumstances surrounding the request. Committee forms are due to your instructor by the last day of class and within two weeks of the date of the circumstance to be reviewed. Each student is to fill out his/her own committee form in the event of a group circumstance. Please contact your instructor for more information. Important Withdrawal Dates for the Fall Semester: Oct. 26th to drop selectively, December 5th to withdraw from all classes.

You must attend a laboratory section that is attached to your lecture section and you must work with a laboratory partner from your lecture section in order to receive participation points on a lab.

- Labs must be turned in only to YOUR instructor and are due IN YOUR CLASS on the Wednesday following the lab day. As a courtesy to students, labs will be accepted on Friday IN YOUR CLASS with no penalty. After that, NO LATE LABS WILL BE ACCEPTED.
- Each student must complete his/her own copy of the laboratory sheets. Be prepared to turn in your copy of the lab if your partner is absent the day that it is due. Only one lab per team (2-3 students) will be graded; if more than one lab is turned in, only one will be graded and returned. Only labs turned in to your instructor during regularly scheduled class time will be accepted. Make plans to get your lab turned in by your partner(s) if you must miss class.

This course has been certified as part of WVU's General Education Curriculum (GEC) Section 2A. Basic Math \& Scientific Inquiry. Students are expected to use quantitative and scientific knowledge effectively. In addition, the course will focus, in part on developing your ability to communicate effectively.

Objectives: The general goals of this course are common to all the courses in the Institute for Math Learning at WVU:

- CONCEPTUAL UNDERSTANDING: rather than just rote memorization of algorithms
- MULTIPLE APPROACHES: to examine problems from analytical, geometric and numerical perspectives, to make judgements about the appropriateness of the choice of formal or approximate methods of solution
- TECHNOLOGY AS A TOOL: use technology as an integral part of the process of formulation, solution, and communication, to gain experience in selecting the proper tool for a given problem
- ACTIVE STUDENT LEARNING: to engage in the exploration and discovery of concepts and to learn to work cooperatively to solve problems
- COMMUNICATION OF IDEAS: to demonstrate understanding by explaining in written or oral form the meanings and applications of concepts
- APPLICATIONS: use mathematics to model and solve problems
- PROBLEM SOLVING: gain experience as a problem solver, to analyze problems in an organized manner

The specific goals of the college algebra course - students will be able to:

- understand and use the concept of a function
- solve mathematical application problems by connecting mathematical results to contextual meanings
- solve equations and inequalities in one variable using multiple representations
- graph equations and functions and relate graphical features to related algebraic and numeric features
- use and compare algebraic, graphical, and numerical approaches to solve problems involving lines, parabolas, circles, systems of equations and matrices
- use and compare algebraic, graphical, and numerical approaches to solve problems involving, functions (including higher order polynomial, rational, radical, absolute value, exponential and logarithmic).

To accomplish course goals, the class incorporates interactive laboratories which use technology and student activities that emphasize writing and student collaboration. Students will work in pairs or triads on the laboratories and in class exercises in order to develop mathematical communication skills. The development of your communication skills is an integral part of the course.

Evaluation: Multiple forms of assessment will be used to measure your understanding of algebra concepts and problem solving. The point distribution of these assessments is:

Assessment	Number	Max Points
Awarded		

Inclusivity Statement: The West Virginia University community is committed to creating and fostering a positive learning and working environment based on open communication, mutual respect, and inclusion. If you are a person with a disability and anticipate needing any type of accommodation in order to participate in this class, please advise me and make appropriate arrangements with the Office of Accessibility Services (293-6700). For more information on West Virginia University's Diversity, Equity, and Inclusion initiatives, please see http://diversity.wvu.edu.

Academic Integrity: The integrity of the classes offered by any academic institution solidifies the foundation of its mission and cannot be sacrificed to expediency, ignorance, or blatant fraud. Therefore, I will enforce rigorous standards of academic integrity in all aspects and assignments of this course. For the detailed policy of West Virginia University regarding the definitions of acts considered to fall under academic dishonesty and possible ensuing sanctions, please see the Student Conduct Code: http://studentlife.wvu.edu/office_of_student_conduct/student_conduct_code. Should you have any questions about possibly improper research citations or references, or any other activity that may be interpreted as an attempt at academic dishonesty, please see me before the assignment is due to discuss the matter.

TENTATIVE SCHEDULE

Week	Text Sections	Laboratory/Quiz/Exam
1 W 8/17-T 8/23	R. 1 - R. 5 \& R. 7 - R. 8 (BRUSH-UP/REVIEW) The content found in the Review is considered review/foundation. Your instructor will not "teach" the content from the Review. It is quickly skimmed through during the first week as a warm-up to the course. If you do not feel comfortable working through the exercises on your own, you should consider enrolling in a prerequisite course or obtaining a tutor. Content from the Review will be on Test 1 and mastery of it is expected throughout the course.	LAB: eCampus Check in, Bonus Pre-Test (earn up to 10 bonus points) QUIZ: Quiz release and HQ 1 (on R.1-R.5, R. 7 - R.8) - One attempt due before Test 1 (M126 eCampus LINK: https://ecampus.wvu.edu Your instructor will provide information in the first lab so that you can access your account.)
$\begin{aligned} & 2 \\ & \text { W 8/24-T 8/30 } \end{aligned}$	1.1-1.3	LAB: Choose partners, begin Introduction and Basic Graphs lab. This lab should be finished during open lab time if needed and is due on the Wednesday of week 4. See the schedule posted in 213-215 Armstrong Hall for open lab times.
$\begin{aligned} & 3 \\ & \text { W 8/31-T 9/6 } \end{aligned}$	1.5, 1.7	EXAM: Test 1 (on R. 1 - R.5, R. 7 - R.8, 1.1-1.3, 1.5, and Introduction Basic Graph Lab during your scheduled lab time) QUIZ: HQ 2: (on 1.1-1.3, 1.5) - One attempt due before Test 1
$\begin{aligned} & 4 \\ & \text { W 9/7-T 9/13 } \end{aligned}$	2.1-2.3	LAB: Graphing Techniques
$\begin{aligned} & 5 \\ & \text { W } 9 / 14-\text { T 9/20 } \end{aligned}$	3.1-3.3	LAB: The Box, QUIZ: HQ 3 (on 1.7, 2.1-2.3, 3.1-3.4)-One attempt due before Test 2
$\begin{aligned} & 6 \\ & \text { W 9/21-T 9/27 } \end{aligned}$	3.4-3.5, 6.1	EXAM: Test 2 (on 1.7, 2.1-2.3, 3.1-3.4, Graphing Techniques Lab and Box Lab)
$\begin{aligned} & 7 \\ & \text { W 9/28 - T 10/4 } \end{aligned}$	3.6, 4.3, 1.4	LAB: Quadratic Functions
$\begin{aligned} & 8 \\ & \text { W 10/5 - T 10/11 } \end{aligned}$	4.4, 5.1, R. 6 (synthetic div.)	LAB: Polynomial Functions QUIZ: HQ 4 (on 3.5-3.6, 6.1, 4.3 - 4.4, 5.1, 1.4, R.6)-One attempt due before Test 3
$\begin{aligned} & 9 \\ & \text { W 10/12-T 10/18 } \end{aligned}$	5.2-5.3	EXAM: Test 3 (on $3.5-3.6,6.1,4.3-4.4,5.1,1.4$, R.6, Quadratic Lab, and Polynomial Lab)
$\begin{aligned} & 10 \\ & \text { W 10/19-T 10/25 } \end{aligned}$	5.5-5.6	LAB: Rational Functions
$\begin{aligned} & 11 \\ & \text { W 10/26-T 11/1 } \end{aligned}$	6.2-6.3	LAB: Exponential Functions QUIZ: HQ 5 (on 5.2-5.3, 5.5-5.6, 6.2-6.3)-One attempt due before Test 4
$\begin{aligned} & 12 \\ & \text { W } 11 / 2-\mathrm{T} 11 / 8 \end{aligned}$	6.4-6.5	Election Day Recess - Tuesday, November 8
$\begin{aligned} & 13 \\ & \text { W 11/9-T 11/15 } \end{aligned}$	6.6-6.7	EXAM: Test 4 (on 5.2-5.3, 5.5-5.6, 6.2-6.3, Rational Lab, and Exponential Lab)
$\begin{aligned} & 14 \\ & 11 / 16-18 \& \quad 11 / 28-29 \end{aligned}$	6.8 \& 12.1	LAB: Logarithms - Tuesday, November 29 (Split Week: This Lab is after Fall Recess)
$\begin{aligned} & 15 \\ & 11 / 30-12 / 6 \end{aligned}$	12.2, Review for Final, Evaluations	LAB: Bonus Posttest (earn up to 10 bonus points) QUIZ: HQ 6 (on 6.4-6.8, 12.1-12.2) The HQ portion of the course will be "turned off" by 5:00 pm December 6, 2016.

Help: On an average, you should expect to study two to three hours outside of class for each one hour in class. If you are spending more, then you may need to seek help! There are several excellent sources for such help. First, seek help from your classmates; often they can explain the problem since they have been working on it. You may also seek assistance during open lab times in the IML laboratory, from the Math Learning Center in 301 Armstrong Hall, a residence hall study session, or you may seek help from your instructor during office hours.

Math 126 Homework - Fall 2016

Section	Name	Problem Numbers
R. 1	Real Numbers	1, 21, 23, 25, 27, 33, 35, 39, 41, 45, 51, 57, 59, 65, 69, 75, 81, 87, 91, 93
R. 2	Algebra Essentials	4, 11, 15, 23, 24, 31, 37, 41, 45, 47, 49, 57, 59, 61, 65, 73, 74, 75, 76, 77, 87, 89, 93, 95, 141
R. 3	Geometry Essentials	11, 21, 25, 27, 29, 31, 37, 39
R. 4	Polynomials	7, 9, 17, 21, 29, 31, 34, 39, 47, 55, 69, 93, 97
R. 5	Factoring Polynomials	5, 13, 17, 25, 33, 39, 45, 51, 57, 61, 65, 85, 91, 95, 105, 107, 121
R. 6	Synthetic Division	5, 9, 17
R. 7	Rational Expressions	5, 13, 19, 25, 31, 47, 53, 63, 73
R. 8	nth Roots; Rational Exponents	1, 2, 7, 15, 17, 21, 23, 31, 43, 47, 55, 63, 71, 75
1.1	Rectangular Coordinates; Graphing Utilities; Introduction to Graphing Equations	$5,7,9,13,33,39,49,57,64,75,77,79,83,95,105$
1.2	Solving Equations Using a Graphing Utility; Linear and Rational Equations	41, 43, 45, 51, 53, 55, 61, 71, 77, 89, 95, 99, 101, 105, 107, 109
1.3	Quadratic Equations	5, 6, 13, 15, 17, 23, 25, 37, 39, 41, 45, 49, 51, 63, 67, 79, 83, 97, 99, 105
1.4	Complex Numbers; Quadratic Equations in Complex Number System	9, 13, 19, 26, 27, 31, 33, 35, 49, 51, 53, 59, 73, 79
1.5	Radical Equations; Equations in Quadratic Form, Absolute Value Equations; Factorable Equations	11, 15, 23, 25, 31, 35, 51, 57, 61, 67, 69, 86, 89, 116
1.7	Solving Inequalities	11, 12, 14, 23, 27, 31, 35, 47, 49, 59, 65, 69, 71, 73, 77, 79, 83, 107, 109
2.1	Intercepts, Symmetry; Graphing Key Equations	13, 21, 27, 31, 39, 41, 45, 51, 69, 71
2.2	Lines	13, 17, 27, 29, 31, 41, 43, 45, 59, 65, 77, 83, 85, 97, 121, 127, 128
2.3	Circles	6, 9, 11, 17, 23, 27, 31, 32, 37, 39, 43
3.1	Functions	15, 19, 27, 33, 39, 41, 53, 55, 57, 61, 65, 73, 75, 93, 104
3.2	The Graph of a Function	9, 13, 15, 23, 25, 39
3.3	Properties of Functions	11, 13, 15, 17, 19, 21, 29, 33, 53, 59, 69, 73, 75
3.4	Library of Functions: Piecewisedefined Functions	9, 10, 11, 12, 13, 14, 15, 16, 25, 29, 35, 41, 43, 47
3.5	Graphing Techniques: Transformations	7, 9, 11, 13, 15, 17, 19, 27, 31, 41, 45, 63, 69
3.6	Math Models: Building Functions	2, 3, 5, 6, 7, 21, 23, 25, 26
4.3	Quadratic Functions and Their Properties	11, 13, 15, 17, 27, 37, 41, 43, 49, 83
4.4	Building Quadratic Models from Verbal Descriptions and from Data	3, 7, 8, 9, 11, 15
5.1	Polynomial Functions and Models	11, 15, 23, 25, 32, 37, 43, 55, 61, 69, 71, 79, 91
5.2	Properties of Rational Functions	13, 23, 25, 31, 41, 45, 51
5.3	The Graph of a Rational Function	7, 15, 27, 33, 35, 51, 61
5.5	The Real Zeros of a Polynomial Function	11, 13, 21, 27, 39, 43, 63, 73
5.6	Complex Zeros, Fundamental Theorem of Algebra	7, 9, 17, 23, 33
6.1	Composite Functions	7, 9, 11, 19, 47, 53, 65, 71
6.2	One-to-one functions; Inverse functions	11, 15, 19, 21, 35, 43, 50, 63, 65, 90
6.3	Exponential Functions	15, 21, 22, 23, 25, 27, 29, 31, 33, 35, 38, 49, 59, 63, 77, 81, 97, 121
6.4	Logarithmic Functions	13, 15, 19, 23, 31, 37, 57, 63, 70, 73, 79, 81, 87, 97
6.5	Properties of Logarithmic Functions	2, 13, 15, 23, 27, 41, 49, 51, 53, 61, 63, 65, 69, 75, 76, 85
6.6	Logarithmic and Exponential Equations	11, 15, 25, 37, 43, 47, 51, 81
6.7	Financial Models	7, 15, 29, 35, 41, 45, 54
6.8	Exponential Growth and Decay	1, 3, 7, 9,11
12.1	Systems of Linear Equations: Substitution and Elimination	7, 11, 19, 23, 25, 29, 41, 55
12.2	Systems of Linear Equations: Matrices	5, 11, 17, 39, 41, 51

